ChemSpot: a hybrid system for chemical named entity recognition
نویسندگان
چکیده
منابع مشابه
ChemSpot: a hybrid system for chemical named entity recognition
MOTIVATION The accurate identification of chemicals in text is important for many applications, including computer-assisted reconstruction of metabolic networks or retrieval of information about substances in drug development. But due to the diversity of naming conventions and traditions for such molecules, this task is highly complex and should be supported by computational tools. RESULTS We...
متن کاملHybrid named entity recognition for question-answering system
Named entity recognition is important in a sophisticated information service such as Question-Answering and TextMining since most of the answer type and text mining unit depend on the named entity. Korean named entity recognition is difficult since each word of named entity has not specific features such as the capitalizing feature of English which represents named entity distinctly. In additio...
متن کاملHybrid Approach for Named Entity Recognition
This paper proposes the Named Entity Recognition (NER) system for Punjabi language using a hybrid approach in which rule based approach and machine learning approach i.e. Hidden Markov Model (HMM) is combined. With no Dataset available, the Named Entities (NEs) were manually tagged which led us to the creation of training and testing dataset, under the linguistic supervision. Using hybrid appro...
متن کاملHybrid Models for Chinese Named Entity Recognition
This paper describes a hybrid model and the corresponding algorithm combining support vector machines (SVMs) with statistical methods to improve the performance of SVMs for the task of Chinese Named Entity Recognition (NER). In this algorithm, a threshold of the distance from the test sample to the hyperplane of SVMs in feature space is used to separate SVMs region and statistical method region...
متن کاملA Named Entity Recognition System for Dutch
We describe a Named Entity Recognition system for Dutch that combines gazetteers, handcrafted rules, and machine learning on the basis of seed material. We used gazetteers and a corpus to construct training material for Ripper, a rule learner. Instead of using Ripper to train a complete system, we used many different runs of Ripper in order to derive rules which we then interpreted and implemen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bioinformatics
سال: 2012
ISSN: 1460-2059,1367-4803
DOI: 10.1093/bioinformatics/bts183